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1 Introduction

In the beginning of the 1990s Nori [13] and Sczech [14] almost simultaneously and
independently developed the so called Eisenstein cohomology classes for GLn(Z)

with rational coefficients and showed that one can get the Klingen–Siegel theorem,
about the rationality of zeta values of totally real fields at negative integers, as a direct
consequence.

The approach by Nori involves the de Rham complex and is therefore restricted to
rational coefficients. Sczech’s construction is analytic in nature and he gets rational
cohomology classes in the end by studying Dedekind sums.

In this paper we present a different approach, depending on the topological poly-
logarithm, which is very much inspired by Nori’s beautiful construction, but works
with almost arbitrary coefficients. Moreover, the cohomology class we construct has
values in the formal completion of the group ring of a finitely generated free abelian
group and is hence exactly the Iwasawa algebra if one considers p-adic coefficients.

The main idea of our construction can be explained as follows. Nori’s cohomology
classes should be really considered not as classes on the locally symmetric space
associated to GLn(Z) but rather on the universal family of topological metrized tori
above it. On this universal family these classes are completely determined by a residue
condition, so that the comparison map between de Rham and singular cohomology in
Nori’s approach becomes unnecessary. In particular, Nori’s construction interpreted
in this way works for almost arbitrary coefficients.

From our construction we get directly the integrality results of Deligne–Ribet and
the p-adic interpolation of the special L-values of totally real fields. In fact we get
directly cohomology classeswith values in the Iwasawa algebra.We also explain a new
result, building upon results of Graf [7], about the integrality and p-adic interpolation
of Eisenstein cohomology classes for Hilbert modular varieties.

In recent years the question of finding integral versions of Sczech’s Eisenstein
cocycle or of Shintani’s construction received considerable interest. Charollois and
Dasgupta were able to refine Sczech’s construction to the integral level in [4]. But
because of problems with their smoothing construction they could only prove part of
the integrality result of Deligne–Ribet for the L-values. Another approach to p-adic
interpolation is via the Shintani cocycle of Hill [8] and Solomon, which was refined
to give p-adic interpolation by Spiess [18] and subsequently Steele [19].

Our approach is completely different from all the above and relies only on the
cohomological properties of the so called logarithm sheaf. Being purely topological,
we do not need to choose any extra data as for the Shintani cocycle (which depends on
a Shintani decomposition) nor do we have any severe restrictions on the coefficients
as our approach is not analytic at all.

Moreover, in a geometric situation, where one replaces the tori by abelian varieties,
a completely parallel story for other cohomology theories (and even for motivic coho-
mology) can be developed. This leads to p-adic interpolation of motivic cohomology
classes and hence of non-critical L-values (see [10] and the applications of this theory
in [11]). This gives a further argument for pursuing the approach by the topological
polylogarithm.
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The essential results on p-adic interpolation of L-values of this paper were obtained
many years ago in the nineties but were never published. The only exception is the
case of the Riemann zeta function which is covered in [2]. The newer results on the
Eisenstein classes of Hilbert modular varieties and their p-adic interpolation depends
on the purely topological construction of the Harder’s Eisenstein cohomology in the
thesis of Graf (forthcoming [7]).

2 A topological interpretation of the generating function for Bernoulli
polynomials

To motivate and explain the constructions in this paper in the simplest case, we review
here the topological construction of the Bernoulli polynomials and their p-adic inter-
polation which already appeared in [2, Section 2.3. and 2.5]. This is the case n = 1 of
the construction in this paper.

Recall the generating function for the Bernoulli polynomials

zexz

ez − 1
=

∞∑

k=0
Bk(x)

zk

k!

with B0(x) = 1. In our approach we consider the function

f (x, z) := exz

1− ez
= −1

z
+

∞∑

k=0
− Bk+1(x)

k + 1

zk

k!

for x ∈ R with values in the power series z−1R[[z]]. Note that − Bk+1(x)
k+1 = ζ(x,−k)

for 0 < x ≤ 1 where ζ(x, s) = ∑∞
n=0 1

(x+n)s
is the Hurwitz zeta function. The

function f (x, z) satisfies the differential equation d
dx f (x, z)−z f (x, z) = 0 andhas the

residue property f (0, z)− f (1, z) = 1. We will construct a local system on the circle
S1 = R/Zwhich has a connection of the form d

dx − z and single out certain horizontal
sections by residue conditions. These sections we call topological polylogarithms
because their definition is analogue to the one of polylogarithms overGm . The function
f (x, z) will appear as the special value at x ∈ S1 of such a polylogarithm. The crucial
point of our approach to rationality and integrality of L-values is the fact that this local
system is of purely topological nature and hence can be constructed with arbitrary
coefficients.

We give now some more details, to explain our method in this simplest case. Fix a
commutative ring A (think of A = Zp, Q, R) and consider the group ring A[Z]which
can be identified with the ring of Laurent polynomials A[t, t−1]. The completion with
respect to the augmentation ideal J = (t − 1) of A[Z] is

R = RA(Z) = lim←−
k

A[t, t−1]/(t − 1)k ∼= A[[t − 1]].
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1452 A. Beilinson et al.

The group Z acts on R by multiplication with t . If Q ⊂ A one has a canonical
isomorphism

exp∗ : R ∼= A[[z]] t 	→ ez =
∑

k≥0

zk

k!

under which the Z-action becomes multiplication with ez . We now use the Z action
on R to define a local system L og on the circle S1 = R/Z by letting L og be the
sheaf of sections of the quotient

(R× R)/Z

where n ∈ Z acts as (x, r)n := (x + n, t−nr). A global section ofL og is then a map
f : R → R which satisfies f (x + n) = t−n f (x).
For A = R we can consider the C∞ bundle L og∞ associated to L og, which

is a vector bundle with fibre R[[z]]. This has x 	→ e−xz as a global section, which
induces an isomorphism ofL og∞ with the sheaf of C∞-sections of S1×R[[z]]. The
connection∇ onL og∞ corresponds under this isomorphism to∇0 := d− z, because
∇e−xz = −ze−xzdx .

To describe the residue condition, we use the localization sequence in cohomology.
Let D ⊂ R/Z be a non-empty set of torsion sections, to fix ideas we take D = 1

cZ/Z

the c-torsion sections for an integer c ≥ 2. From the explicit description of theZ-action
one computes H0(Z, R) = 0 and H1(Z, R) ∼= A, hence

H0(S1,L og) = 0 H1(S1,L og) ∼= A.

Consider the localization sequence for D ⊂ R/Z

0 → H0(S1\D,L og)
res−→ H1

D(S1,L og) → A → 0.

We can identify H1
D(S1,L og) ∼= ⊕

d∈D L ogd . It is important to note that for c
invertible in A, one has a canonical isomorphism L ogd ∼= R (the reason is that
the c-multiplication is an isomorphism of R, see Proposition 3.5 below). With this
identification the localization sequence reads

0→ H0(S1\D,L og) →
⊕

d∈D
R → A → 0.

Obviously, A[D] :=⊕
d∈D A ⊂⊕

d∈D R and for every α ∈ A[D]0 := ker(A[D] →
A) we get a unique section
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polα ∈ H0(S1\D,L og)

which has residue α(d) at d. If x ∈ S1 is a non-zero f -torsion point, with f invertible
in A, we can evaluate at x and get

polα(x) ∈ A[[t − 1]].

If, for example, A = Z[1/c f ], then by embedding A into Q, one obtains that the
coefficients of polα(x) in Q[[z]] are in A. This gives the desired integrality.

To compute these sections explicitly, we first consider a slight variant of polα . Let
Q ⊂ A and L∗A := Az−1 be the rank one A-module with trivial Z-action. Then we
can have the localization sequence for L∗A ⊗L og and D = {0}

0→ H0(S1\{0}, L∗A ⊗L og) → L∗A ⊗ R → L∗A → 0

and we ask for a section pol ∈ H0(S1\{0}, L∗A ⊗L og) with residue

z−1 ⊗ z ∈ L∗A ⊗ R ∼= z−1A[[z]].

Now let A = R, then x 	→ e{x}z , where {x} is the fractional part of x , is a horizontal
section of z−1L og∞ over S1\{0}with residue 1−ez at x = 0. Thus pol is the section

pol(x) = e{x}z

1− ez
= f ({x}, z)

of z−1R[[z]]. From the definitions one sees that for α ∈ A[D]0 one has

polα(x) =
∑

d∈D
α(d) pol(x − d).

If D = 1
cZ/Z are the c-torsion points, we can define an special element α[c] of A[D]0

by α(0) = c − 1 and α(d) = −1 for d �= 0. Then one gets

polα[c](x) = c f ({x}, z)−
c−1∑

a=0
f
({

x − a

c

}
, z
)

= c f ({x}, z)− f ({cx}, c−1z)

=
∞∑

k=0
(cζ(x,−k)− c−kζ(cx,−k)) z

k

k!

and, as explained above, the coefficients cζ(x,−k) − c−kζ(cx,−k) are in Z[1/c f ]
if x is a non-zero f -torsion point. A closer analysis shows that it is not necessary to
assume f invertible in A, from which one obtains the usual integrality properties of
cζ(x,−k)− c−kζ(cx,−k). For more details on this see the proof of Corollary 5.8.
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1454 A. Beilinson et al.

3 The topological polylogarithm

3.1 Group rings of lattices

We consider free abelian groups L of finite rank n, which we call lattices. Let A be
a commutative ring and A[L] the group ring of L with coefficients in A. We write
δ : L → A[L]×, � 	→ δ� for the universal group homomorphism. In particular, � ∈ L
acts on A[L] by multiplication with δ� so that δ�(�

′) = (�+ �′). Let L A := A ⊗Z L .

Definition 3.1 The completion of A[L] with respect to the augmentation ideal J is
denoted by

R := R(L) := lim←−
k

A[L]/J k .

We write I := J R and consider R with the filtration defined by the I k R and the
induced L-action δ : L → R×, i.e. � acts by multiplication with δ�. In particular, I
is stable under the L-action. We write R(k) := R/I k+1 ∼= A[L]/J k+1 and RA if we
need to express the dependence on A.

Remark 3.2 Let T (L∨) := Spec A[L] = Hom(L ,Gm) be the algebraic torus with
character group L over Spec A. The augmentation ideal J := ker(A[L] → A) defines
the unit section of the smoothmap T (L∨) → Spec A and hence is a regular ideal. Note
also that it is stable under the L-action. Then Spf R is the formal group associated to
T (L∨). In particular, if �1, . . . , �n is a basis of L , then R is a power series ring in the
δ�1 − 1, . . . , δ�n − 1.

Lemma 3.3 There is an isomorphism

Sym· L A ∼= gr·I R =
⊕

k≥0
I k/I k+1. (3.1)

The induced action of L on gr·I R is trivial.

Proof As L is abelianwe have an isomorphism LA ∼= J/J 2 ∼= I/I 2, which sends 1⊗�

to δ� − 1 mod J 2. As J and hence I is a regular ideal, the induced map Sym· L A →
gr·I R is an isomorphism. If a ∈ I k then (δ� − 1) · a ≡ 0 mod I k+1, so that δ� · a ≡
a mod I k+1, which implies that L acts trivially on gr·I R. ��

The formation of R is functorial in L: For each homomorphism ϕ : L → L ′ we
have an A-algebra homomorphism A[L] → A[L ′] compatible with the augmentation,
which induces

ϕR : R → R′,

where R′ := R(L ′), which respects the filtrations by I and I ′, i.e., maps I k to (I ′)k .
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Definition 3.4 A homomorphism of lattices ϕ : L → L ′ is called an isogeny, if it is
injective with finite cokernel. For an isogeny ϕ we denote by degϕ := #(L ′/ϕ(L))

the degree of ϕ.

Proposition 3.5 Let ϕ : L → L ′ be an isogeny with degϕ invertible in A, then

ϕR : R → R′

is an isomorphism.

Proof Both rings R, R′ are complete and separated so that it suffices to show that

gr I ϕR : Sym L A → Sym L ′A

is an isomorphism. The A-module I k/I k+1 is generated by products of elements of the
form (δ� − 1)r and ϕR maps these to (δϕ(�) − 1)r . This shows that gr I ϕR = Sym ϕA,
where ϕA : L A → L ′A is the induced map. If degϕ is invertible in A, ϕA and hence
gr I ϕ is an isomorphism. ��

For the closer investigation of R we need the completion of the divided power
algebra of L A.

Definition 3.6 Let �L A =⊕
k≥0 �k L A be the graded divided power algebra of LA.

For � ∈ LA we write �[k] for the k-th divided power of � and write

�̂L A := lim←−
r

�L A/I [r ]

where I := �+L A is the augmentation ideal. We define an L-action on �̂L A by
δ : L → �̂L×A , � 	→

∑
k≥0 �[k].

Note that one has �n = n!�[n] and the formula

(�+ �′)[k] =
k∑

m=0
�[m]�′[k−m] (3.2)

in �LA, which shows that δ is a group homomorphism. As �(LA ⊕ L A) ∼= �L A ⊗A

�L A the diagonal makes the algebra �L A into a graded Hopf algebra. Its (graded)
dual is (�L A)∗ ∼= Sym L∗A, where L∗A is the A-dual of L A. As L A is free one has also
a canonical isomorphism

�L A ∼= TSym L A (3.3)

with theHopf algebra of the symmetric tensors. The isomorphism LA ∼= �1L A induces
an A-algebra homomorphism
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1456 A. Beilinson et al.

ŜymL A → �̂L A, (3.4)

where ŜymLA is the completion of Sym LA at its augmentation ideal. Explicitly, if
we choose a basis �1, . . . , �n of L A, this homomorphism is given by

�
k1
1 · · · �knn 	→ k1! · · · kn !�[k1]1 · · · �[kn ]n . (3.5)

From this description it is clear that (3.4) is an isomorphism if A is a Q-algebra.

Proposition 3.7 There is an A-algebra homomorphism

exp∗ : R → �̂L A

mapping I k to (�+L A)[k], which is functorial for isogenies and compatible with the
L-actions. We write exp∗k : R → �k L A for the composition with the projection to
�k L A.

Proof Consider the group homomorphism δ : L → (�̂L A)×. This induces an A-
algebra homomorphism A[L] → �̂LA which maps (δ� − 1)r into (�̂+L A)[r ] and
hence Jr to (�̂+L A)[r ]. Taking completions, this induces the desired A-algebra homo-
morphism exp∗ : R → �̂L A. ��
Remark 3.8 The map exp∗ is induced from the exponential map of the formal group
Spf R. For this one should think of Spf �̂L A as the divided power formal neighbour-
hood of 0 in the Lie algebra L∗A := HomA(L A, A) of Spf R. The homomorphism exp∗
has also the following description. Let H := lim−→r

HomA(R/I r , A) be the bigebra of
translation invariant differential operators on Spf R. Then one has R ∼= HomA(H, A)

and one has a map U(L∗A) → H of the universal enveloping algebra of the Lie algebra
L∗A to H. If we observe that U(L∨A) ∼= Sym L∗A we get an A-algebra homomorphism

R ∼= HomA(H, A) → HomA(U(L∨A), A) ∼= �̂L A

which coincides with exp∗.

Proposition 3.9 If A is a Q-algebra, then

exp∗ : R → �̂L A

is an isomorphism.

Proof Identify gr I R ∼= Sym I/I 2 ∼= Sym L A. Then we claim that the associated
graded of exp∗ : R → �̂L A

gr I exp
∗ : Sym L A → �L A

coincides with the canonical map. But LA ∼= I/I 2 is generated by δ�− 1 which maps
to (

∑
k≥0 �[k])− 1. This is congruent to �[1] modulo (�+L A)[2]. Thus gr I exp∗ must
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be induced from the isomorphism LA ∼= �1L A by the universal property of Sym LA.
In particular, if A is a Q-algebra then gr I exp

∗ is an isomorphism. As R and �̂L A are
complete and separated, this implies that exp∗ is an isomorphism. ��

Usually it is more convenient to work with the power series ring ŜymL A than with
�̂LA.

Corollary 3.10 Let A be a Q-algebra, then the isomorphism

exp∗ : R ∼= �̂L A ∼= ŜymL A

is induced by the group homomorphism exp : L → ŜymL A which maps � 	→∑
k≥0 �⊗k

k! .

Proof This is clear as �⊗k

k! 	→ �[k] under ŜymL A ∼= �̂L A. ��

3.2 Iwasawa algebras of lattices

This section is not needed for the construction of the topological polylogarithm, but
it is needed later in the construction of the p-adic measures.

Fix a prime number p. In this section Awill be a p-adically complete and separated
ring.

Definition 3.11 The Iwasawa algebra A[[LZp ]] is the completed group ring

A[[LZp ]] := lim←−
r

A[L/pr L]

where the projective limit is taken with respect to A[L/pr+1L] → A[L/pr L].

The A-algebra R is canonically isomorphic to the Iwasawa algebra.

Proposition 3.12 The map δ : L → R× induces a continuous A-algebra isomor-
phism

A[[LZp ]]
∼=−→ R.

Proof Consider the composition L
δ−→ A[L]× → (A[L]/(p, J )r+1)×. By induction

on r one sees that δpr � − 1 = δ
pr

� − 1 ∈ (p, I )r+1. This implies that this composi-
tion factors through L/pr L and one gets by the universal property of the group ring
an A-algebra homomorphism A[L/pr L] → A[L]/(p, J )r+1, such that the compo-
sition A[L] → A[L/pr L] → A[L]/(p, J )r+1 is the quotient map. This induces a
continuous homomorphism
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A[[LZp ]] → lim←−
r

A[L]/(p, J )r+1

which is an isomorphism on the subring A[L]. As A[L] is a dense subring on both
sides and both rings A[[LZp ]] and lim←−r

A[L]/(p, J )r+1 are complete and separated,
the homomorphism itself must be an isomorphism. It remains to show that

R ∼= lim←−
r

A[L]/(p, J )r+1,

i.e., that R is (p, I )-adically complete and separated. As (p, I )2r ⊂ (p)r + I r ⊂
(p, I )r the (p, I )-adic topology on the finitely generated A-module R/I r ∼= A[L]/Jr
coincides with the (p)-adic one. Hence the R/I r are complete in the (p, I )-adic
topology, so that also R is (p, I )-adically complete. As

⋂
r≥0(p)r = 0 and

⋂
r≥0 I r =

0 it is also separated. ��
Definition 3.13 Let A be a p-adically complete and separated ring. Then we call

mom : A[[LZp ]]
∼=−→ R

exp∗−−→ �̂L A ∼= T̂SymL A

the moment map. The projection onto its k-th component

momk : A[[LZp ]]
∼=−→ R → TSymk L A

we call the k-th moment map.

To explain the name “moment map” recall that A[[LA]] can be interpreted as the
algebra of measures on LZp .

Definition 3.14 Let C (LZp ) be the continuous A-valued functions on LZp . An A-
valued measure is an A-linear map μ : C (LZp) → A. We write

Meas(LZp , A) := HomA(C (LZp ), A)

for the space of all A-valued measures.

It is well-known that Meas(LZp , A) is a ring under convolution of measures which
is canonically isomorphic to A[[LZp ]].
Proposition 3.15 Identify Meas(LZp , A) ∼= A[[LZp ]] and let

Meas(LZp , A) ∼= R
momk−−−→ TSymk LZp

be the composition of the isomorphism in Proposition 3.12 with the k-th moment map.
If we interpret the A-dual (TSym L A)∗ ∼= Sym L∗A as polynomial functions x

k1
1 · · · xknn

on L A, then
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momk(μ) =
∑

k1+···+kn=k
μ
(
xk11 · · · xknn

)
�
[k1]
1 · · · �[kn ]n

where μ(xk11 · · · xknn ) are the moments of the measure μ.

The proposition follows by a direct calculation, as we do not need it, we skip the
proof.

3.3 Torsors and locally constant sheaves

We follow the principle “right action on spaces, left action on cohomology”.
Let G be a group and π : X → S be a right G-torsor. For a left G-module M we

define a G action on X × M by (x,m)g := (xg, g−1m) and write as usual

X ×G M := X × M/G

for the orbits of G on X × M .

Definition 3.16 For a left G-module M , we define the locally constant sheaf M̃ to be
the sheaf of sections of X ×G M over S (where M has the discrete topology). If the
G-action is trivial then M̃ is the constant sheaf M .

The sections over U ⊂ S open of the sheaf M̃ are explicitly given by

M̃(U ) = { f : π−1(U ) → M | f (ug) = g−1 f (u) for all g ∈ G, u ∈ π−1(U )}.
(3.6)

If X is simply connected, then the functor

{G-modules} → {locally constant sheaves on S}
M 	→ M̃

(3.7)

is an equivalence of categories. The inverse functor is F 	→ �(X, π∗F ). We apply
this in the case of lattices.

Definition 3.17 Let L be a lattice. We write V := R⊗ L where � ∈ L acts from the
right on V by v 	→ v + �. We denote by

T := T (L) := V/L

the associated compact real torus.

Over T we have the fundamental L-torsor V

0→ L → V
π−→ T → 0 (3.8)

with π−1(0) = L .
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Definition 3.18 Let R×1 := (1+ I )× ⊂ R× be the subgroup of 1 units. The R×1 -torsor
Log× on T is the push-out of the sequence (3.8) with δ : L → R×1 , so that one has an
exact sequence of abelian groups

0 → R×1 → Log×
pr1−→ T → 0. (3.9)

Note that we also have Log× := V ×L R×1 . The R×1 -torsor Log× is obviously
rigidified over 0 ∈ T by 1 ∈ R×1 . By [15, Expose VII, Proposition 1.3.5] the group
structure on Log× can be uniquely recovered from its R×1 -torsor structure together
with its rigidification 1 of its fibre Log×0 in 0 ∈ T .

3.4 The logarithm sheaf

We will consider local systems on the compact torus

T := T (L) := V/L .

Proposition 3.19 There exists a local system L og = L ogT on T of free rank one
R-modules, such that the L-action L → Aut(0∗L og) = R× coincides with δ : L →
R×. Let 1 ∈ 0∗L og be a generator, then the pair (L og, 1) is unique up to unique
isomorphism.

Proof Uniqueness: Let (L , s) be another pair with the properties ofL og. Then there
exists a unique L-equivariant isomorphism α : 0∗L og ∼= 0∗L with α(1) = s. Hence
there is a unique isomorphism of local systemsL og ∼= L .

Existence: We give two constructions. For the first consider R as L-module via
δ : L → R× and define L og := R̃. As generator 1 ∈ 0∗L og = R we choose the
element 1 ∈ R.

For the second let π!A be the direct image with compact supports of the constant
sheaf A on V . The sheaf π!A is a local system of A[L]-modules of rank one and
0∗π!A = A[L] has 1 ∈ A[L] as generator. Hence we can take

L og := R ⊗A[L] π!A (3.10)

with the induced generator 1 ∈ 0∗L og. ��
Definition 3.20 We call (L og, 1) the logarithm sheaf and we let

Log := V ×L R

so that L og is the sheaf of sections of Log.

Proposition 3.21 The logarithm sheaf (L og, 1) has the following properties.

(1) Consider the filtration I kL og := Ĩ k onL og. Then there is a unique identifica-
tion of local systems of gr·I R = Sym L A modules
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gr·I L og ∼= Sym·L A

that maps 1 mod IL og to 1 ∈ Sym0 L A = A.
(2) Let ϕ : L → L ′ be a homomorphism of lattices and ϕ : T → T ′ be the induced

map, then one has an homomorphism of local systems

ϕL og : L ogT → ϕ∗L ogT ′ ,

which is compatible with the filtrations and respects the generators 1, 1′.
(3) If ϕ : L → L ′ is an isogeny and degϕ invertible in A, then

ϕL og : L ogT → ϕ∗L ogT ′ ,

is an isomorphism.
(4) Let +: T × T → T be the group structure on the torus, then one has a unique

isomorphism

pr∗1 L og ⊗R pr∗2L og ∼= +∗L og,

under which 1⊗ 1 	→ 1, i.e., L og is a character sheaf.
(5) Consider the R×1 -torsor of local sections of L og that are modulo IL og equal

to 1 ∈ A. Then there is a canonical isomorphism of this R×1 -torsor with Log×
such that 1 	→ 1. Under this isomorphism the group structure on Log× is given
by the product induced by the isomorphism in (4).

Proof (1) follows immediately from Lemma 3.3 and the functoriality of the functor
M 	→ M̃ . For (2) note that ϕ∗L ogT ′ are the sections of V ×L R′, where L acts
via ϕ : L → L ′ and δ′ : L ′ → (R′)× on R′. Then (3) follows from (2) and Proposi-
tion 3.5. The assertion (4) follows from the isomorphism 0∗(pr∗1 L og⊗R pr∗2L og) ∼=
0∗(+∗L og). Finally, as L og = R̃, the torsor in (5) is R̃×1 and there is a unique iso-
morphism with Log× sending 1 to 1. From the remark after Definition 3.18 it follows
that the group structure on Log× is induced by the isomorphism in (4). ��

3.5 Trivializations of the logarithm sheaf

Definition 3.22 Let H ⊂ T be a subgroup. Amultiplicative trivialization ofL og on
H is a collection of generators 1h ∈ L ogh for all h ∈ H such that 1h mod IL ogh
equals 1 ∈ A and 1h ⊗ 1h′ = 1h+h′ under the isomorphism in Proposition 3.21 for all
h, h′ ∈ H .

We give two alternative descriptions of a multiplicative trivialization. First consider
the group extension
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0→ R×1 → Log×
pr1−→ T → 0

from Definition 3.18. A multiplicative trivialization is a group homomorphism
	 : H → Log× which is a section of pr1. In particular, the set of all multiplicative
trivializations of L og is a Hom(H, R×1 )-torsor.

For a second description consider the right translation action +: T × H → T .
A multiplicative trivialization is an extension of this H -action to Log×, i.e., a map
Log× ×H → Log× satisfying the usual condition for an H -action, such that one has
a commutative diagram

Log× ×H −−−−→ Log×

pr1×id
⏐⏐�

⏐⏐�pr1

T × H
+−−−−→ T .

Given a multiplicative trivialization 	 : H → Log× the map +: Log× ×H → Log×
is the composition of 	 with the group structure Log× ×Log× → Log×.

Definition 3.23 Denote by T tors := LQ/L ⊂ T the subgroup of torsion elements in
T and by T (A) ⊂ T tors the subgroup of elements whose order is invertible in A.

Proposition 3.24 There exists a unique multiplicative trivialization 	can ofL og over
T (A). It is compatible with isogenies and for t ∈ T [N ] ⊂ T (A) it is explicitly given by
the isomorphism

t∗L og ∼= t∗[N ]∗L og ∼= 0∗[N ]∗L og ∼= 0∗L og,

where the outer isomorphisms are the pull-backs of Proposition 3.21(3) and themiddle
one comes from [N ] ◦ t = [N ] ◦ 0.
Proof Uniqueness: Let N be an integer which is invertible in A. It suffices to show
that 	can is uniquely determined on the N -torsion points T [N ]. But the multiplicative
trivializations on T [N ] form an Hom(T [N ], R×1 )-torsor. But R×1 has a filtration by
(1+ I r )× such that gr>0 R×1 ∼= Sym>0 L A, which has no N -torsion as N is invertible
in A. This implies that Hom(T [N ], R×1 ) = 0.

Existence: Let 	 |T [N ] be the inverse of Log×[N ] ∼= T [N ]. By construction these
isomorphisms are compatible for different N . ��

3.6 Cohomology of the logarithm sheaf

All unlabelled tensor products in this section and the following ones are taken over Z.
Let L be a lattice of rank n. Recall that one has a canonical isomorphism of algebras

H·(L , Z) ∼= 
·L . We define

λ := λ(L) := 
nL = Hn(L , Z). (3.11)
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Theorem 3.25 Let L be lattice of rank n. One has

Hi (T,L og) ∼=
{
0 for i �= n

Hn(T, A) for i = n

induced by the map L og → L og/IL og = A. In particular, the cap-product
induces an isomorphism

Hn(T,L og ⊗ λ) ∼= A.

Proof FromL og = R⊗A[L]π!A and because R is A[L]-flat one gets Hi (T,L og) ∼=
Hi (T, π!A)⊗A[L] R. As

Hi (T, π!A) ∼= Hi
c (V, A) ∼=

{
0 i �= n

A i = n

this implies the vanishing result. The homomorphism Hn(T,L og) → Hn(T, A)

induced by L og → A is surjective and because both groups are isomorphic to A it
must be an isomorphism. The cap-product gives Hn(T,L og ⊗ λ) ∼= Hn(T, A) ⊗
Hn(L , Z) ∼= A. ��
Corollary 3.26 Let D ⊂ T be a finite and non-empty subset. Then for i �= n − 1

Hi (T \D,L og ⊗ λ) = 0

and one has a short exact sequence

0 → Hn−1(T \D,L og ⊗ λ)
res−→ L og |D σD−→ A → 0,

where L og |D= ⊕
d∈D L ogd is the restriction of L og to D and σD is the sum of

the maps L ogd → L ogd/IL ogd = A.

Proof Consider the localization sequence for the closed subset D ⊂ T

· · · → Hi (T,L og ⊗ λ) → Hi (T \D,L og ⊗ λ) → Hi+1
D (T,L og ⊗ λ) → · · ·

For each d ∈ D choose an open neighbourhood Ud such that L og is constant on Ud

and the Ud for different d are disjoint. Then by excision

Hi+1
D (T,L og ⊗ λ) ∼=

⊕

d∈D
Hi+1
{d} (Ud ,L og |Ud ⊗λ).

AsL og |Ud is constant and hence isomorphic toL ogd , one has a canonical isomor-
phism
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Hn
{d}(Ud ,L og |Ud ⊗λ) ∼= L ogd

and Hi+1
{d} (Ud ,L og |Ud ⊗λ) = 0 for i + 1 �= n (see [12, Proposition 3.2.3]). ��

3.7 Equivariant cohomology of the logarithm sheaf

We describe an equivariant version of the above construction.
Let� → GL(L) be a group action on L . Wewrite L�� for the semi-direct product

with multiplication

(�, γ )(�′, γ ′) = (�+ γ �′, γ γ ′).

To follow our principle, we let (l, γ ) ∈ L � � act from the right on v ∈ V by
v(�, γ ) := γ−1v + γ−1�. In particular, the L-torsor π : V → T is �-equivariant.
From this we deduce a right action of � on Log by

Log×� → Log; ((v, r), γ ) 	→ (γ−1v, ϕγ−1(r)) (3.12)

so that L og is a �-equivariant sheaf. We want to compute the �-equivariant coho-
mology Hi (T, �;L og ⊗ λ) but for later needs, we compute a slightly more general
cohomology group.

Theorem 3.27 Let D ⊂ T be a finite non-empty subset stabilized by � and M an
A[�]-module, which is flat over A. Then:
(1) There are isomorphisms

Hi (T, �;M ⊗A L og ⊗ λ) ∼= Hi−n(�, M)

and

Hi (T \D, �;M ⊗A L og ⊗ λ) ∼= Hi−n+1(�, Hn−1(T \D, M ⊗A L og ⊗ λ)).

(2) One has a long exact sequence

· · · → Hi (T \D, �;M ⊗A L og ⊗ λ)
res−→ Hi−n+1(�, M ⊗A L og |D)

σD−→ Hi−n+1(�, M) → · · ·

Proof This is follows from the spectral sequence

Hi (�, H j (X, M ⊗A L og ⊗ λ)) ⇒ Hi+ j (X, �;M ⊗A L og ⊗ λ)

for X = T, T \D, the isomorphism H j (X, M⊗AL og⊗λ) ∼= M⊗AH j (X,L og⊗λ)

of A[�]-modules, Theorem 3.25 and Corollary 3.26. ��
As a special case, we get:
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Corollary 3.28 One has Hi (T \D, �;M ⊗A L og ⊗ λ) = 0 for i < n − 1 and a
canonical isomorphism

res : Hn−1(T \D, �;M ⊗A L og ⊗ λ) ∼= ker(M ⊗A L og |D σd−→ M)�.

3.8 The topological polylogarithm and Eisenstein classes

Definition 3.29 For D ⊂ T finite and non-empty we define

A[D]0 := ker

(
⊕

d∈D
A

∑
−→ A

)
,

where � is the summation map (ad)d∈D 	→ �d∈Dad . We view the elements α ∈
A[D]0 as functions α : D → A. We also set

R[D]0 := ker

(
⊕

d∈D
R

σD−→ A

)

where σD is the sum of the augmentations R → R/I R = A.

Suppose that D ⊂ T (A) and that � stabilizes D. Then the trivialization 	can from

Proposition 3.24 induces an isomorphism R[D]0 ∼= ker(L og |D σD−→ A), so that we
get

(A[D]0)� ⊂ (R[D]0)� ∼= ker(L og |D σD−→ A)�.

We apply this to Corollary 3.28 in the case M = A:

Definition 3.30 For D ⊂ T (A), stabilized by � and α ∈ (A[D]0)� the unique coho-
mology class

polα ∈ Hn−1(T \D, �;L og ⊗ λ)

with res(polα) = α is called the topological polylogarithm associated with α.

Remark 3.31 Note that (A[D]0)� �= 0 in general: Let N be invertible in A and D =
T [N ] be the N -torsion points of T . Then D is stable under� and Nnδ0−∑d∈T [N ] δd ∈
(A[D]0)� .

Let t ∈ T \D be any point stabilized by �. Then the pull-back of polα along t is a
cohomology class

t∗ polα ∈ Hn−1(�,L ogt ⊗ λ). (3.13)

If t ∈ T (A), we can use the trivialization 	can to identify L ogt ∼= R.
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Definition 3.32 Let D ⊂ T (A) and t ∈ T (A)\D be both stabilized by �, then for
α ∈ (A[D]0)� the class

Eisα(t) := t∗ polα ∈ Hn−1(�, R ⊗ λ)

is called the Eisenstein class associated to t and α. If we identify �̂L A ∼= T̂SymL A

then we also write

Eiskα(t) := exp∗k(Eisα(t)) ∈ Hn−1(�,TSymk L A ⊗ λ) (3.14)

for the k-th component of exp∗(Eisα(t)).

The following special case of the above definition was considered by Nori and
Sczech.

Definition 3.33 Let D ⊂ T (A) be a finite non-empty subset such that 0 /∈ D. The
Eisenstein operator of Nori and Sczech is the map

(A[D]0)� → Hn−1(�, R ⊗ λ)

α 	→ Eisα(0).

Remark 3.34 Let us explain how our approach is related to Nori’s construction. Nori
uses A = Q and considers the singular chain complexC ofV \Swhere S :=⋃

d∈D d+
L is a finite union of cosets of L , where D are representatives of torsion points in T . Let
C̃ be the kernel of the augmentationC → Q. On the other hand he considers a complex
D̃ which is quasi-isomorphic to 
n ⊗ ŜymLQ[n − 1]. The stabilizer of this union of
cosets of L is an arithmetic subgroup of V �GL(V ), which he calls π and which has
L as a normal subgroup. Write π = L � �. Nori is looking for π -equivariant maps
in the derived category from C̃ to 
nLQ ⊗ ŜymLQ[n − 1]. Taking the local system

defined by ŜymLQ on L\(V \S) = T \D we get L og, so that such a π -equivariant
map is the same as a �-equivariant cohomology class in Hn−1(T \D, �;L og⊗λ). In
this sense our construction is just a reinterpretation of Nori’s in terms of sheaf theory.
In contrast to Nori we work with the completion of the group ring A[L] and not with
ŜymLQ. This change is crucial if one wants to have integral coefficients.

In the case where t is an N -torsion point, but N not invertible in A, one can define
also an Eisenstein class depending on N . This is often useful for integrality questions.
The isogeny [N ] : L ⊂ L ′ := 1

N L induces

[N ]L og : L ogt → L og′0 = R′.

Definition 3.35 Let D ⊂ T (A) and t ∈ T \D an N -torsion point with N not neces-
sarily invertible in A. Let [N ] : L ⊂ L ′ := 1

N L be the natural inclusion. Assume that
D and t are stabilized by �. Then we let
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NEisα(t) := [N ]L ogt
∗ polα ∈ Hn−1(�, R′ ⊗ λ)

and write

NEis
k
α(t) := exp∗k(NEisα(t)) ∈ Hn−1(�,TSymk L ′A ⊗ λ).

Remark 3.36 (On integrality of Eiskα(t)) From the definitions it is clear that if we con-
sider NEiskα(t) as a classwith coefficients in A[1/N ], i.e. in Hn−1(�,TSymk L ′A[1/N ]⊗
λ), then it coincides with the [N ]L og(Eis

k
α(t)) = NkEiskα(t). In particular, NkEiskα(t)

is a class with coefficients in A.

3.9 A variant of the polylogarithm I

For the study of the general Eisenstein distribution later the polylogarithm defined so
far is not flexible enough. In this section we discuss the required slight generalization
of the polylogarithm.

Let E ⊂ T be a finite subset then L og |E has an A[E]-module structure

A[E] ⊗L og |E→ L og |E (3.15)

given on a stalk e ∈ E by multiplication with the value f (e) for f ∈ A[E]. Assume
that E ⊂ T tors, E ∩ D = ∅ and suppose that � stabilizes E and D. Let M = A[E],
then from Corollary 3.28 we get the isomorphism

res : Hn−1(T \D, �; A[E] ⊗A L og ⊗ λ) ∼= ker(A[E] ⊗A L og |D σD−→ A[E])�.

(3.16)

From the definition of A[D]0 we get

(A[E] ⊗A A[D]0)� ⊂ ker(A[E] ⊗A L og |D σD−→ A[E])�.

Definition 3.37 We define for h ∈ (A[E] ⊗A A[D]0)� the polylogarithm polh to be
the class

polh ∈ Hn−1(T \D, �; A[E] ⊗A L og ⊗ λ)

which corresponds to h under the isomorphism (3.16).

The restriction of polh to E is a class in Hn−1(�, A[E] ⊗A L og |E ⊗λ) and the
image under the map from (3.15) gives a class

Eish ∈ Hn−1(�,L og |E ⊗λ). (3.17)
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Definition 3.38 For E ⊂ T tors and D ⊂ T (A) with E ∩ D = ∅ and such that �

stabilizes E and D, we define the map

Eis : (A[E] ⊗A A[D]0)� → Hn−1(�,L og |E ⊗λ)

by h 	→ Eish .

Remark 3.39 A more intuitive way to think about Eish is as follows. Suppose that
� stabilizes each point of E . Then we can view h ∈ (A[E] ⊗A A[D]0)� as a map
h : E → (A[D]0)� , e 	→ he with he(d) := h(e, d). With this notation one has
Eish =∑

e∈E e∗ polhe , with polhe as defined in Definition 3.30.

3.10 A variant of the polylogarithm II

The polylogarithm polα has the advantage of being defined for arbitrary coefficients
and it has good trace compatibilities as we will show in the next section. The disad-
vantage is that it depends on functions α of degree zero. The variant pol discussed
below can be evaluated on each non-zero torsion point but works only for Q-algebras
A. It is also this version of the polylogarithm which plays the dominant role in the
literature on the motivic polylogarithm.

We specialize Corollary 3.28 to the case D := {0} andM = L∗A := HomA(L A, A).
Then we get

res : Hn−1(T \{0}, �; L∗A ⊗A L og ⊗ λ) ∼= (L∗A ⊗A I )�, (3.18)

where I ⊂ R is the augmentation ideal. If A is a Q-algebra we have an isomorphism
exp∗ : R ∼= ŜymL A and we have a canonical class

� ∈ L∗A ⊗A L A ⊂ L∗A ⊗A I (3.19)

corresponding to id : L A → L A. Obviously, � ∈ (L∗A ⊗ I )� .

Definition 3.40 Let A be a Q-algebra, then the polylogarithm pol is the class

pol ∈ Hn−1(T \{0}, �; L∗A ⊗A L og ⊗ λ)

corresponding to � under the isomorphism (3.18).

The contraction L∗A ⊗A Symk L A → Symk−1 L A induces a map

contr : L∗A ⊗A R → R. (3.20)

Furthermore, the multiplication LA ⊗A R → R induces

mult : R → L∗A ⊗A R (3.21)
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and it is straightforward to show that contr ◦mult = id. The map mult extends to a
homomorphism of sheaves

mult : L og → L∗A ⊗A L og (3.22)

Let t ∈ T tors\{0} be stabilized by �. Then 	can allows us to identify t∗L og ∼= R.

Definition 3.41 Let A be a Q-algebra and t ∈ T tors\{0} be stabilized by �. The class

Eis(t) := contr(t∗ pol) ∈ Hn−1(�, R ⊗ λ)

is called the Eisenstein class associated to t . We also write

Eisk(t) := exp∗k(Eis(t)) ∈ Hn−1(�,Symk L A ⊗ λ).

Let us discuss one special case of the relation between Eisk(t) and the class Eiskα(t)
defined in Definition 3.32, which will be used later (compare also [10, 12.4.4]).

Definition 3.42 Let ϕ : L → L ′ be an isogeny and define the function on D :=
L ′/ϕ(L)

αϕ := (degϕ)δ0 −
∑

d∈D
δd .

Consider

mult(polαϕ
) ∈ Hn−1(T \ϕ−1(0), �; L∗A ⊗A L og ⊗ λ)

then using the isomorphisms L og ∼= ϕ∗L og′ and L A ∼= L ′A (because A is a Q-
algebra) one also has (D = ϕ−1(0))

ϕ∗ pol′ ∈ Hn−1 (T \D, �; L∗A ⊗A L og ⊗ λ
)
.

Finally, pol |T \D , the restriction of pol to T \D, gives a class in the same group.

Proposition 3.43 One has the equality

mult(polαϕ
) = (degϕ) pol |T \D −ϕ∗ pol′ .

in Hn−1(T \D, �; L∗A ⊗A L og ⊗ λ).

Proof From Theorem 3.27 we have an isomorphism

res : Hn−1 (T \D, �; L∗A ⊗A L og ⊗ λ
) ∼= (L∗A ⊗A R[D]0)�.

We have res(mult(polαϕ
)) = (degϕ)δ0� −∑d∈D δd� and res((degϕ) pol |T \D) =

(degϕ)δ0� . Moreover, res(ϕ∗ pol′) =∑
d∈D δd� , which proves the claim. ��
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Corollary 3.44 For k ≥ 0 the relation of Eisenstein classes

Eiskαϕ
(t) = (degϕ)Eisk(t)− Eis′k(ϕ(t))

holds in Hn−1(�,TSymk L A ⊗ λ), where we have used the isomorphism

Symk L A ∼= TSymk L A ∼= TSymk L ′A

to consider Eis′k(ϕ(t)) as a class in this cohomology group.

Proof One has

Eiskαϕ
(t) = exp∗k(contr ◦mult(t∗ polαϕ

))

= (degϕ) exp∗k ◦ contr
(
t∗ pol |T \D −t∗ϕ∗ pol′)

= (degϕ)Eisk(t)− Eis′k(ϕ(t)).

��

3.11 Trace compatibility

The polylogarithm classes are compatible with respect to isogenies ϕT : T ′ → T (note
that in this sectionwe interchange the role of L and L ′). This is a geometric incarnation
of the distribution property of Eisenstein series.

We use the following set up: Let L , L ′ be lattices of rank n with actions by � and
let ϕ : L ′ → L be an isogeny compatible with the �-action. Then one has a group
homomorphism (ϕ, id) : L ′ � � → L � �.

We consider finite non-empty subsets D ⊂ T (A) and D′ ⊂ T ′(A) such that
ϕT (D′) ⊂ D. One has a cartesian square

ϕ−1(D) −−−−→ T ′

ϕ

⏐⏐�
⏐⏐�ϕ

D −−−−→ T

(3.23)

Proposition 3.45 Let M be an A[�]-module, then there is a trace map

Trϕ : Hn−1(T ′\D′, �;M ⊗A L ogT ′ ⊗ λ′) → Hn−1(T \D, �;M ⊗A L ogT ⊗ λ)

such that the diagram
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Hn−1(T ′\D′, �;M ⊗A L ogT ′ ⊗ λ′) res−−−−→∼= ker(M ⊗A R′[D′] → M)�

Trϕ

⏐⏐�
⏐⏐�ϕR

Hn−1(T \D, �;M ⊗A L ogT ⊗ λ)
res−−−−→∼= ker(M ⊗A R[D] → M)�

commutes.

Proof As ϕ : T ′ → T is a topological submersion and a finite map we have ϕ∗(M⊗A

L ogT )⊗ λ′ ∼= ϕ!(M ⊗A L ogT )⊗ λ (see [12, Section 3.3]). In particular, the trace
map Rϕ!ϕ!(M ⊗A L ogT ) → M ⊗A L ogT induces a map

ϕ!ϕ∗(M ⊗A L ogT )⊗ λ′ → M ⊗A L ogT ⊗ λ.

This gives

Hn−1(T ′\D′, M ⊗A L ogT ′ ⊗ λ′)
ϕL og−−−→ Hn−1(T ′\D′, ϕ∗(M ⊗A L ogT )⊗ λ′)
restr−−→Hn−1(T ′\ϕ−1(D), ϕ∗(M ⊗A L ogT )⊗ λ′)
∼=−→ Hn−1(T \D, ϕ!ϕ∗(M ⊗A L ogT )⊗ λ′)
→ Hn−1(T \D, M ⊗A L ogT ⊗ λ),

where we have used that ϕ : T ′\ϕ−1(D) → T \D is finite, so that ϕ! = ϕ∗. The result
follows fromTheorem 3.27 and the diagram commutes because of the cartesian square
(3.23) and [12, 3.1.9]. ��
Remark 3.46 In this paper we consider only the trace compatibility for isogenies. We
remark that a similar statement holds also in the more general case of a submersion.
Thiswas used in [9] to compute the residue of theEisenstein classes onHilbertmodular
varieties.

We discuss now the consequences of this proposition for the different notions of
polylogarithm we have defined.

Corollary 3.47 In the situation of Definition 3.30 one has for α ∈ (A[D′]0)�

Trϕ(pol′α) = polϕ∗(α)

where ϕ∗(α) is the function ϕ∗(α)(d) =∑
d ′∈ϕ−1(d) α(d ′).

Proof This is immediate from the definition, Proposition 3.45 and the fact that the
restriction of ϕ to the subspace (A[D′]0)� ⊂ (R[D′]0)� is given by the formula in
the corollary. ��

The following generalization of the trace compatibility is used later in the general
study ofEisenstein distributions. In the situation of Proposition 3.45 assume in addition
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that one has finite non-empty subsets E ⊂ T tors, E ′ ⊂ T ′tors with ϕT (E ′) ⊂ E and
E ∩ D = ∅, E ′ ∩ D′ = ∅. We have

E ′ � D′ −−−−→ ϕ−1(E)� ϕ−1(D) −−−−→ T ′

ϕ

⏐⏐�
⏐⏐�ϕ

E � D −−−−→ T

(3.24)

We assume that � stabilizes E ∪ D and E ′ ∪ D′. Then the trace map Trϕ induces
a homomorphism A[E ′] → A[E], which we call ϕ (it is the same as ϕ : A[D′] →
A[D]). Let

ϕ ◦ Trϕ : Hn−1(T ′\D′, �; A[E ′] ⊗A L ogT ′ ⊗ λ′)
→ Hn−1(T \D, �; A[E] ⊗A L ogT ⊗ λ)

be the composition of the trace map Trϕ with the map induced by ϕ. Recall the
Eisenstein operator

Eis : (A[E] ⊗A A[D]0)� → Hn−1(�,L og |E ⊗λ)

from Definition 3.38. The trace compatibility for polh has the following consequence
for Eis.

Corollary 3.48 Let E ′ = ϕ−1(E) and ϕ∗ : A[E] → A[E ′] be the map f 	→ f ◦ ϕ.
Then for h ∈ (A[E] ⊗A A[D′]0)� one has

Trϕ(Eis′(ϕ∗⊗id)(h)) = Eis(id⊗ϕ∗)(h).

Proof This is immediate from the definition of Eis and the commutative diagram

A[E] ⊗L og′ |E ′ ϕ∗⊗id

id⊗Trϕ

A[E ′] ⊗L og′ |E ′ (3.15)
L og′ |E ′

Trϕ

A[E] ⊗L og |E (3.15)
L og |E .

��

4 Explicit formulas

In this section we give an explicit formula for the topological polylogarithm. The
computations were essentially done byNori [13] andwe present them here in a slightly
different form.

In this section we always consider A = C so that we can identify R ∼= Ŝym
·
LC.
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4.1 The continuous trivialization of the logarithm sheaf

LetP be the space of positive definite symmetric bilinear forms on V , which we also
consider as translation invariant metrics on V . Let V ∗ be theR-dual of V , then we con-
siderP ⊂ Hom(V, V ∗) with its induced right �-action: B[γ ](v,w) := B(γ v, γw).

We let L � � act onP × V by

(B, v)(�, γ ) := (B[γ ], γ−1(v + �)).

Note that the action of � on L factors through GL(L), which acts almost discretely on
P and thatP is contractible. We consider the sheafL og over (P × Log)/� as the
sheaf of sections ofP×V/L ��. Let D ⊂ T (A) be a finite non-empty subset, which
does not contain 0. By general principles from equivariant cohomology we have

Hn−1(T \D, �,L og ⊗ λ) ∼= Hn−1(P × (V \π−1(D))/L � �,L og ⊗ λ).

We need to set up some more notation.
Recall that R(k) = R/I k+1 and that it has an induced action of L . Recall also that

L og(k) is the associated local system and that we denote by R(k) the constant sheaf
associated to R(k). The canonical maps R(k+1) → R(k) makes these local systems into
pro-local systems.

We writeL og∞ for the pro-bundle defined by C∞⊗L og(k) and similar for R∞.
More generally, we consider the pro-bundles of sheaves of C∞-differential forms
�i ⊗̂L og defined by �i ⊗L og(k) and currents �̂i ⊗̂L og.

OnL og∞ we have the connection∇ := d⊗ id and on R∞ we have the connection
∇0 := d ⊗ id.

Definition 4.1 Let κ be the R∞-valued 1-form on T

κ ∈ V ∗ ⊗ V ⊂ V ∗⊗̂R ⊂ �(T,�1
T ⊗̂R),

which corresponds to the identity map id ∈ Hom(V, V ) ∼= V ∗ ⊗ V .

Obviously, κ is � invariant.

Lemma 4.2 The sheaf L og∞ admits a unique continuous multiplicative trivializa-
tion 	cont on T . The section 	cont is C∞, compatible with N-multiplication, and one
has

∇(	cont) = −κ	cont.

In particular, 	cont |T tors= 	can.

Proof The set of continuous multiplicative trivializations with the property in the
lemma is a torsor under Homcont(T, (1+ I )×), which is trivial because T is compact.
This shows the uniqueness of 	cont. For the existence we consider

V → V × R× v 	→ (v, exp(−v))
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where exp(−v) := ∑
k≥0

(−v)⊗k

k! . This is a section by (3.6), is compatible with N -
multiplication and has the desired property d exp(−v) = −κ exp(−v). ��

4.2 Green’s currents and the topological polylogarithm

We use 	cont from Lemma 4.2 to identify 	cont : R∞ ∼= L og∞. The connection ∇ of
L og∞ corresponds to ∇0− κ under this identification. In particular, we can compute
the equivariant cohomology of L og as

Hi (T \D, �;L og ⊗ λ) = Hi ((�·(P × (T \D))⊗̂R ⊗ λ)�,∇).

For the construction of a cohomology class representing the topological polylogarithm
polα , we will first construct a certain Green’s-current. To define these, we need two
notations: Let λ∗ := HomZ(λ, Z), then the volume form on T is defined to be the
section

vol ∈ λ∗ ⊗ λ ⊂ �n(T )⊗ λ (4.1)

corresponding to the isomorphism λ ∼= λ. Let δP×{0} be the delta function of P ×
{0} ⊂ P × T . We consider this as an element in �̂n(T ) ⊗ λ by multiplying it with
vol.

Definition 4.3 AGreen’s-current is an n−1-current G ∈ (�̂n−1(P×T )⊗̂R⊗λ)� ,
which is smooth onP × (T \{0}), and such that

∇(G ) = δP×{0} vol− vol

in (�̂n(P × T )⊗̂R ⊗ λ)� .

With a method due essentially to Nori we prove in the next section (see Corol-
lary 4.14):

Theorem 4.4 A Green’s-current as in Definition 4.3 exists.

Here we explain how we get a representative of polα with the help of G . The group
T acts on the complex �̂·(P × T )⊗̂R by translation.

Definition 4.5 Let D ⊂ T tors be finite and non-empty and G be a Green’s-current.
Let τd be the translation by d ∈ T and α = ∑

d∈D αd1d ∈ C[D]0. Then we define
the n − 1-current

G (α) :=
∑

d∈D
αdτ

∗−dG ,

which is smooth onP × (T \D).

With this notation we can formulate the main result in this section.
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Theorem 4.6 If D ⊂ T tors and α ∈ (C[D]0)�, then the restriction of G (α) to P ×
(T \D) is a smooth �-invariant closed n − 1-form, which represents polα .

Proof As α and G are�-invariant, the same holds for G (α). By definition∇(G (α)) =∑
d∈D αdδd , which implies that the restriction of G (α) to P × (T \D) is closed and

that res(G (α)) = α. With Corollary 3.28 we see that G (α) represents polα . ��
We also want to construct a current, which represents the variant of the polyloga-

rithm pol from Definition 3.40. Let �1, . . . , �n be a basis of L and μ1, . . . , μn be the
dual basis of V ∗. Define the closed form η := 1

n

∑n
j=1(−1) jμ j dμ1 ∧ · · · ∧ d̂μ j ∧

· · · ∧ dμn , then a straightforward computation shows

−κη = � vol,

where � ∈ L∗A ⊗A L A is element from (3.19).

Theorem 4.7 Let G̃ := �G + η, then

∇(G̃ ) = δP×{0}� vol

and G̃ represents pol ∈ Hn−1(T \{0}, �; L∗A⊗AL og⊗λ) defined in Definition 3.40.

Proof This follows from the formula

(∇0 − κ)(�G + η) = �(δP×{0} vol− vol)− κη = �δP×{0} vol .

��

4.3 Explicit construction of a Green’s current

The idea for the construction of the Green’s current presented in this section goes
essentially back to Nori [13]. One rewrites G as a Fourier-series and considers the
resulting differential equations for the coefficients. This differential equation can be
solved by inverting a differential operator.

We write

L∗ := Hom(L , Z) ⊂ V ∗

for the dual lattice of L and 〈, 〉 : V × V ∗ → R for the evaluation map. Further we
let i := √−1 be a square-root of −1. Any current G ∈ �̂n−1(P × T )⊗̂R ⊗ λ has a
Fourier-series

G (B, v) =
∑

μ∈L∗
Eμ(B)e2π i〈v,μ〉
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where Eμ(B) ∈ �n−1(P × T )⊗̂R ⊗ λ are R-valued differential forms, which are
constant in the T direction. We write

Eμ(B) = E0
μ + · · · + En−1

μ

and Ea
μ ∈ �a(P)⊗
n−1−aV ∗⊗̂R ⊗ λ is the component in bidegree (a, n − 1− a)

of Eμ.

Lemma 4.8 Suppose that G is a Green’s-current as in Definition 4.3 and

G (B, v) =
∑

μ∈L∗
Eμ(B)e2π i〈v,μ〉

its Fourier-series. If we assume that E0 = 0, then the differential equation ∇(G ) =
δP×{0} vol− vol amounts to

dEμ + (2π iμ− κ)Eμ = vol for all μ �= 0, (4.2)

i.e.,

(2π iμ− κ)E0
μ = vol and dEa

μ + (2π iμ− κ)Ea+1
μ = 0. (4.3)

Here we view μ ∈ V ∗ ⊂ 
·V ∗⊗̂R as an R-valued 1-form, so that (2π iμ − κ) ∈

·V ∗⊗̂R.

Proof Immediate calculation using ∇ = ∇0− κ and the fact that the Fourier series of
δP×{0} vol is

∑
μ∈L∗ e2π i〈v,μ〉 vol. ��

We will now forget the fact that μ comes from the lattice L∗ and try to find a
natural solution of (4.2) for any 0 �= μ ∈ V ∗. For this we consider the half-space
Vμ>0 := {v ∈ V | 〈v, μ〉 > 0}. We consider B as an isomorphism B : V ∼= V ∗, so
that we have a map

vμ : P → Vμ>0 B 	→ B−1(μ). (4.4)

We will construct Eμ as the vμ-pull-back of a natural n − 1-form E(μ) on Vμ>0.
Define the commutative DG-algebraA := �·(V )⊗
·V ∗ with differential d(ω⊗

ξ) = dω ⊗ ξ . On A we have the derivation θ of degree −1, which is zero on �·(V )

and maps μ ∈ V ∗ ⊂ 
·V ∗ to the linear function μV ∈ C∞(V ) with μV (v) := μ(v).
The DG-algebra A contains the subalgebra


·(V ∗ ⊕ V ∗) ∼= 
·V ∗ ⊗
·V ∗ ⊂ �·(V )⊗
·V ∗

and we let � : 
V ∗ → 
·V ∗ ⊗
·V ∗ be the algebra homomorphism induced by the
diagonal map V ∗ → V ∗ ⊕ V ∗.
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Let �1, . . . , �n be a basis of L and μ1, . . . , μn be the dual basis of V ∗. Then

vol := μ1 ∧ · · · ∧ μn ⊗ �1 ∧ · · · ∧ �n ∈ 
nV ∗ ⊗ λ

and κ =∑n
j=1 dμ j,V ⊗ � j ∈ �1(V )⊗̂R.

Definition 4.9 We let ψ := �(vol) ∈ An ⊗ λ and write ψ = ∑n
a=0 ψa with ψa ∈

�a(V )⊗
n−aV ∗ ⊗ λ. Then we define

νa := θ(ψa) ∈ �a(V )⊗
n−1−aV ∗ ⊗ λ.

Wenote that the forms νa have the following explicit description. Letωi := dμi,V ∈
�1(V ), ωI := 
i∈Iωi for any subset I ⊂ {1, . . . , n} and define similarly μI . Then

νa =
∑

|I |=a

n∑

j=1
μ j,VωI ⊗ μI c\{ j},

where I c is the complement of I . The forms νa have the following properties:

Lemma 4.10 For ξ ∈ V ∗ one has the formulae

dνa = (a + 1)ψa+1

ξ ∧ ψa = −dξV ∧ ψa−1

ξ ∧ νa = ξVψa − dξV ∧ νa−1

In particular, if one writes κV :=∑n
j=1 μ j,V ⊗ � j , so that dκV = κ, one has

κ ∧ νa = κVψa − dκV ∧ νa−1.

Proof For a form ω ∈ A denote by ωa ∈ �a(V ) ⊗ 
n−aV ∗ its a-part. For ξ ∈ V ∗
one has �(ξ) = dξV + ξ and hence dθ(�(ξ)1) = 0 and dθ(�(ξ)0) = dξV = �(ξ)1.
Write voln = voln−1 ∧μn . Then

�(voln)
a = �(voln−1)a−1 ∧�(μn)

1 +�(voln−1)a ∧�(μn)
0.

Applying dθ and induction on n gives

dνa = a�(voln−1)a ∧�(μn)
1 + (a + 1)�(voln−1)a+1 ∧�(μn)

0

+�(voln−1)a ∧�(μn)
1.

This shows the first equation. The second follows from�(ξ)∧�(vol) = �(ξ∧vol) =
0 and �(ξ) = dξV + ξ and the third by applying θ to it. The formula for κ follows
from the third equation using the explicit formulae for κ and κV . ��
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Write A(μ) := �·(V>μ) ⊗ 
·V ∗, then μV is invertible in A(μ). The element
κV :=∑n

j=1 μ j,V ⊗ � j ∈ C∞(V )⊗̂R is topologically nilpotent, so that μV − κV is
invertible in C∞(V>μ)⊗̂R. Define

Ea
(μ) := (−1)aa!(2π iμV − κV )−a−1νa E(μ) :=

n−1∑

a=0
Ea

(μ). (4.5)

Lemma 4.11 The formulae

(2π iμ− κ)E0
(μ) = ψ0 = vol

dEa
(μ) + (2π iμ− κ)Ea+1

(μ) = 0

hold. In particular, Eμ := v∗μE(μ) satisfies the differential equation (4.2). Moreover,
for γ ∈ � one has

γ ∗Eμ = Eμ◦γ−1 .

Proof From Lemma 4.10 we have

(2π iμ− κ)νa+1 = (2π iμV − κV )ψa+1 − d(2π iμV − κV ) ∧ νa

d((2π iμV − κV )−a−1νa) = (a + 1)((2π iμV − κV )−a−1ψa+1

− (2π iμV − κV )−a−2d(2π iμV − κV )νa)

which show that the differential equations are satisfied. For the action of γ note that
vμ ◦ γ = γ−1 ◦ vμ◦γ−1 . As vol and θ are �-invariant one has (γ−1)∗νa = νa . The
map κV : V → R is the canonical inclusion and obviously �-invariant. Therefore
(γ−1)∗E(μ) = E(μ◦γ−1) and the formula follows. ��

Lemma 4.12 Let Ea
μ := v∗μ(Ea

(μ)) and consider B−1 : V ∗ ∼= V as bilinear form on
V ∗, then one has explicitly

Ea
μ = (−1)aa! v∗μ(νa)

(2π i B−1(μ,μ)− B−1(μ))a+1

= (−1)a (k + a)!
k!

∑

k≥0

B−1(μ)⊗k

(2π i B−1(μ,μ))k+a+1
v∗μ(νa)

(where we let B−1(μ)⊗0 := 1) and

v∗μ(νa) =
∑

|I |=a

n∑

j=1
B−1(μ j , μ)
i∈I d B−1(μi , μ)⊗ μI c\{ j} ⊗ �1 ∧ · · · ∧ �n .

Proof Direct computation. ��
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We are going to show that the series
∑

μ∈L∗\{0} Ea
μe

2π i〈v,μ〉 defines a current on
P×T , which is smooth onP×(T \{0}). The following proof is due to Levin (see the
Appendix of [3]). Let P : P × V → C be a C∞ function, which is a homogeneous
polynomial of degree g in the V -variables. We consider the series of distributions

Ks(B, v, P) :=
∑

μ∈L∗\{0}

P(B, μ)

B−1(μ,μ)s+g/2 e
2π i〈v,μ〉

andwe are interested in the convergence and the analyticity in s.We have the following
result:

Theorem 4.13 Let v �= 0 then Ks(B, v, P) is a smooth distribution for all s ∈ C.

Proof We give the essential steps of the proof.
The first step is to show that the seriesKs(B, v, P) defines a (tempered) distribution

on P × T for all s ∈ C. We may assume that B varies in a compact subset of P . A
Fourier series defines a distribution, if the coefficients grow less than a polynomial of

fixed degree N ≥ 0. But B−1(μ)⊗k

(2π i B−1(μ,μ))k/2+s satisfies this requirement if s ≥ −N .
The second step is to remark that themap s 	→ Ks(B, v, P) is analytic. This follows

because for each test function ψ the seriesKs(B, v, P)(ψ) converges absolutely and
uniformly on every compact subset of C (same proof as for Dirichlet series, one also
has to use that weakly analytic functions with values in the dual of a Frechet space are
actually analytic).

Next we note that Ks(B, v, P) converges as a sequence of functions absolutely
and uniformly for �(s) ≥ n/2 + ε with ε > 0. The resulting analytic function on
the half plane �(s) > n/2 can be analytically continued with the standard procedure
known from the analytic continuation of the zeta functions: One writes Ks(B, v, P)

as the Mellin-transform of a theta series as in [17, Chapter I, Paragraph 5] and uses
the Poisson summation formula to obtain the analytic continuation K̃s(B, v, P) of
Ks(B, v, P). To see that the function K̃s(B, v, P) has no poles one uses [17, Chap-
ter I,5, Theorem 3]. Note that our polynomial function P is homogeneous so that its
value at v = 0 is 0 if the degree g > 0. For g = 0 the polynomial is constant and it is
here that the assumption v �= 0 enters to guarantee that K̃s(B, v, P) has no pole.

Finally we remark that the principle of analytic continuation holds for tempered
distributions, so that we can conclude that K̃s(B, v, P) = Ks(B, v, P) for all s ∈ C.
This shows the assertion of the theorem. ��

The next corollary finishes the proof of Theorem 4.4.

Corollary 4.14 The series

G (B, v) =
n−1∑

a=0

∑

μ∈L∗\{0}
Ea

μe
2π i〈v,μ〉
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defines a R⊗λ-valued, �-invariant current onP×T,which is smooth onP×(T \{0})
and satisfies the differential equation

∇(G ) = δP×{0} vol− vol .

In particular, G is a Green’s-current.

Proof We have

∑

μ∈L∗\{0}

B−1(μ)⊗ke2π i〈v,μ〉

(2π i B−1(μ,μ))k+a+1
v∗μ(νa) = 1

(2π i)k+a1
∑

k≥0
K(k+a+1)/2(B, v, P)ω

whereω ∈ �a(P)⊗
n−1−aV ∗ is a smooth differential form, which does not depend
on μ and P is a polynomial of degree k + a + 1 in the V -variables. Hence, by
Theorem 4.13 the left hand side defines a current on P × T , which is smooth on
P × (T \{0}). By Lemma 4.11 we have γ ∗(Eμe2π i〈v,μ〉) = Eμ◦γ−1e2π i〈v,μ◦γ−1〉,
which shows that G (B, v) is �-invariant. The differential equation is an immediate
consequence of Lemma 4.11. ��

5 Applications to L-values of totally real fields and Eisenstein
cohomology of Hilbert modular varieties

We discuss the relation between the topological polylogarithm and special values
of partial L-functions of totally real fields. This is due to Nori and Szcech but we
need the explicit formulae for the p-adic interpolation. The second application shows
the relation of the topological polylogarithm to Eisenstein cohomology for Hilbert
modular varieties. This is a new result due to Graf and the detailed relationship will
appear in his thesis [7]. We discuss here the p-adic interpolation of his construction.

5.1 Values of partial L-functions of totally real fields

In this section F will be a totally real field of degree n over Q and ring of integers
OF . Let L ⊂ F ⊗ R be a fractional ideal and h be an element which is non-zero and
torsion in T (L) = F ⊗ R/L . We define

O+,×
h := {u ∈ O×

F | uh ≡ h mod L and u totally positive}.

We consider the partial zeta function for �(s) > 1

ζ(h, L , s) :=
∑

α∈(h+L)+/O+,×
h

N α−s . (5.1)

where (h + L)+ are the totally positive elements in h + L . A sign character ε : (F ⊗
R)× → {±1} is a character, which is trivial on (F ⊗R)+,× the connected component
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of 1 in (F ⊗R)×. Writing (F ⊗R)× ∼=∏
τ R

× the sign character is the product of n
sign characters of R

×. We denote by |ε| the number of non-trivial sign characters in
this product. We then consider also more generally the partial zeta functions

ζ(ε, h, L , s) :=
∑

α∈(h+L)/O+,×
h

ε(α)

|N α|s (5.2)

and we have the identity

∑

ε

ζ(ε, h, L , s) = 2nζ(h, L , s). (5.3)

Proposition 5.1 The function ζ(ε, h, L , s) admits an holomorphic continuation to
C\{1} and satisfies the functional equation

ζ(ε, h, L , 1− s) = (cos(π(s + 1)/2))|ε|(cos(πs/2))n−|ε| 2ni |ε|�(s)n

(2π)ns vol(L)

×
∑

μ∈L∗\{0}/O+,×
h

ε(μ)e2π i〈h,μ〉

|Nμ|s

where L∗ = HomZ(L , Z) is the dual lattice.

Proof This is a standard result. A sketch of the proof can be found in [16] (for h = 1).
The case of general h is the same. Alternatively the result can be deduced from [6,
Theorem 3.12]. ��

Corollary 5.2 Let sgnk+1 be the sign character sgnk+1(μ) := N (μ)k+1
|N (μ)|k+1 . Then for

any integer k ≥ 0, the value ζ(ε, h, L ,−k) is 0 except for ε = sgnk+1. In particular,
ζ(sgnk+1, h, L ,−k) = 2nζ(h, L ,−k) and one has

ζ(h, L ,−k) = (k!)n
(2π i)n(k+1) vol(L)

∑

μ∈L∗\{0}/O+,×
h

e2π i〈h,μ〉

Nμk+1 .

Proof This is an easy consequence of Proposition 5.1 and the location of the zeroes
of the functions (cos(π(s + 1)/2))|ε| and (cos(πs/2))n−|ε|. ��

5.2 The evaluation map

We keep the notation of the previous section, i.e., F is a totally real field of degree n
over Q with ring of integersOF , L ⊂ F ⊗R is a fractional ideal and we consider the
torus T := F ⊗ R/L .
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Let O+,×
F be the group of totally positive units in OF . Note that this is a free

abelian group of rank n− 1. Let D ⊂ T (A) be a finite non-empty set of torsion points,
t ∈ T (A)\D and α ∈ (A[D]0)� . We consider the Eisenstein class

Eisα(t) ∈ Hn−1(�, R ⊗ λ(L))

from Definition 3.32, where � ⊂ O+,×
F is the stabilizer of D and t . Note that � acts

through the norm and hence trivially on λ. The cap-product with Hn−1(�, Z) induces
a homomorphism

Hn−1(�, R ⊗ λ(L))⊗ Hn−1(�, Z) → H0(�, R ⊗ λ) = R� ⊗ λ (5.4)

where R� are the �-coinvariants. For the actual evaluation we choose coordinates for
T , which at the same time allow us to trivialize λ(L)⊗ R and to give a generator for
Hn−1(�, Z).

Let {τ1, . . . , τn} be the different embeddings of F into R, so that we have an
isomorphism F⊗R ∼= R

n . OnR
n we use the standard orientation. For each x ∈ F⊗R

we write xi := τi (x).
If we identify λ = Hn(L , Z) ∼= Hn(F ⊗ R/L , Z), then the fundamental class of

F ⊗ R/L provides us with a generator of λ.
Let (F ⊗ R)+,× be the totally positive and invertible elements in F ⊗ R. This is

the connected component of the identity in (F ⊗ R)×. The norm of F/Q defines a
homomorphism N : (F ⊗ R)× → R

× and we denote by

(F ⊗ R)1 := ker
(
(F ⊗ R)+,× N−→ R

+,×)

the subgroup of elements of norm 1. Then � ⊂ O+,×
F ⊂ (F ⊗ R)1 and one has a

canonical isomorphism

Hn−1(�, Z) ∼= Hn−1((F ⊗ R)1/�, Z)

with the homology of (F ⊗ R)1/�. The logarithm log : (F ⊗ R)+,× ∼=−→ F ⊗ R ∼=
R
n induces an orientation on (F ⊗ R)+,×. Using the standard orientation on R

+,×
this induces also an orientation on (F ⊗ R)1: For this consider the map R

+,× →
(F ⊗ R)+,×, t 	→ 1 ⊗ t1/n which is a section of the norm map. Then we can write
R
+,× × (F ⊗R)1 ∼= (F ⊗R)+,×, which provides us with the desired orientation. We

use the fundamental class of (F ⊗ R)1/� as a generator of Hn−1(�, Z).

Definition 5.3 With the above notations and generators we define the evaluation map
to be the homomorphism induced by (5.4)

ev : Hn−1((F ⊗ R)1/�, R) → R�.
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Note that ev is defined for any coefficient ring A. In the case A = R or C the
isomorphism F ⊗ R ∼= R

n induces

λ(L)⊗ R ∼= λ(Zn)⊗ R

and we define vol(L) ∈ R, such that vol(L)λ(Zn) corresponds to the lattice λ(L)

under this isomorphism. Then the evaluation is given explicitly by

ev(η) = vol(L)−1
∫

(F⊗R)1/�

η (5.5)

for a differential form η ∈ Hn−1((F ⊗ R)1/�, R ⊗ λ(L)).
We give a more explicit description of (RC)� . The isomorphism LR

∼= R
n allows

us to identify RC
∼= ŜymLC with the power series ring C[[z1, . . . , zn]]. The action of

� ⊂ O+,×
F on L⊗R decomposes into a direct sum of homomorphisms τi : � → R

×,
such that u ∈ � acts as τi (u)zi on zi .

Lemma 5.4 Let w := z1 · · · zn be the product of the zi ’s, then

R�
C
= C[[w]] ⊂ C[[z1, . . . , zn]] = RC

and the projection p� : RC → (RC)� induces an isomorphism (RC)� ∼= (RC)� .

Proof On each monomial zk11 · · · zknn the element u ∈ � acts via τ(u)k1 · · · τn(u)kn , so
that the action of � ⊗ R on RC is semi-simple. In particular, R�

C
= R�⊗R

C
is a direct

summand. Moreover, as each trivial �-representation has to factor through the norm,
� acts trivially exactly on wk for integers k ≥ 0. ��

Remark 5.5 Let A be any Q-algebra and let 
· := 
· Hom(�, Q) = H ·(�, Q). Then
the projection p� : RA → (RA)� yields isomorphisms

H p(�, RA) ∼= H p(�, (RA)�) = (RA)� ⊗
p.

5.3 The topological polylogarithm and L-values of totally real fields

Theorem 4.6 implies that the class of Eisα(t) is represented by
∑

d∈D α(d)(t − d)∗G ,
where we consider t−d as a torsion section of the torus family ((F⊗R)1×T )/� →
(F ⊗ R)1/�. Note that for any torsion section h

h∗G ∈ Hn−1((F ⊗ R)1/�, RC ⊗ λ(L))

because∇(h∗G ) = h∗(δ(F⊗R)1/�×{0} vol− vol) = 0.We can now formulate themain
result in this section.
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Theorem 5.6 Let h ∈ T = F⊗R/L be a non-zero torsion section and let � = O+,×
h

be the stabilizer of h in O+,×
F . Identify (RC)� ∼= C[[w]] as in Lemma 5.4. Then one

has

ev(h∗G ) = (−1)n−1
∑

k≥0
ζ(h, L ,−k) wk

(k!)n .

Equivalently, using the isomorphism ŜymLC
∼= T̂SymLC, we get

exp∗k ◦ ev(h∗G ) = ζ(h, L ,−k)z[k]1 · · · z[k]n ∈ TSymk LC.

Proof From Corollary 4.14 we know that G (B, v) = ∑n−1
a=0

∑
μ∈L∗\{0} Ea

μe
2π i〈v,μ〉

and by definition h∗Ea
μ = 0 for a �= n − 1.

For the evaluation we use the following explicit embedding of (F ⊗ R)1 → P .
For q = (q1, . . . , qn) ∈ (F ⊗ R)1 we consider the form Bq ∈P on R

n , defined by

Bq(v,w) :=
n∑

j=1
q−1j v jw j . (5.6)

Then the map vμ : P → V is given by vμ(Bq) = (q1μ1, . . . , qnμn) and writing
R = C[[z1, . . . , zn]] the map κV : V → R is given by κV (v) =∑n

j=1 v j z j . We want
to compute the integral

ev(h∗G ) = vol(L)−1
∫

(F⊗R)1/�

h∗G

= (−1)n−1
vol(L)

∑

μ∈L∗\{0}/�

e2π i〈h,μ〉
∫

(F⊗R)1

(n − 1)!v∗μ(νn−1)
(∑n

j=1 2π iμ2
j q j − μ j q j z j

)n .

(5.7)

Using N(q) = q1 · · · qn = 1 we get

v∗μ(νn−1) |(F⊗R)1= N(μ)

n∑

j=1
(−1) j−1d log q1 ∧ · · · ∧ d̂ log q j ∧ · · · d log qn .

Let y1, . . . , yn be the coordinate functions of R
n and let t := (N y)1/n , so that y j =

tq j . Then d log t = 1
n

∑n
j=1 d log y j , which gives

Nμ
dy1
y1

∧ · · · ∧ dyn
yn

= dt

t
v∗μ(νn−1) |(F⊗R)1 . (5.8)
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We write

(n − 1)!
(∑n

j=1 2π iμ2
j q j − μ j q j z j

)n =
∫

R+,×
e
−t
(∑n

j=1 2π iμ2
j q j−μ j q j z j

)

tn
dt

t

and we substitute this and (5.8) into (5.7). Using the exact sequence

0 → (F ⊗ R)1 → (F ⊗ R)+,× N−→ R
+,× → 0,

we have to compute the integral

∫

(F⊗R)+,×
e
−
(∑n

j=1 2π iμ2
j q j−μ j q j z j

)

N y
dy1
y1

∧ · · · ∧ dyn
yn

=
n∏

j=1

∫

R+,×
e−y jμ j (2π iμ j−z j )y j

dy j
y j

=
n∏

j=1

1

μ j (2π iμ j − z j )

= 1

Nμ2

∑

�≥0

1

(2π i)�+n
∏

�1+···+�n=�

z�11 · · · z�nn
μ

�1
1 · · ·μ�n

n

.

If we apply the projection p� : C[[z1, . . . , zn]] → C[[w]] only the monomials for
� = nk of the form ( w

Nμ
)k survive and we get

p�

∫

(F⊗R)1/�

(n − 1)!v∗μ(νn−1)
(∑n

j=1 2π iμ2
j q j − μ j q j z j

)n =
∑

k≥0

wk

(2π i)n(k+1) Nμk+1 .

This gives

ev(h∗G ) = (−1)n−1 vol(L)−1
∑

k≥0

⎛

⎝
∑

μ∈L∗\{0}/�

e2π i〈h,μ〉

Nμk+1

⎞

⎠ wk

(2π i)n(k+1)

= (−1)n−1
∑

k≥0
ζ(h, L ,−k) wk

(k!)n

where in the last line we have used Corollary 5.2. The formula for exp∗k(ev(h∗G )) fol-

lows from the fact that wk = (z1 · · · zn)k 	→ (k!)nz[k]1 · · · z[k]n under the isomorphism
Symk LC

∼= TSymk LC. ��
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From the theorem we immediately get all the known rationality, integrality and
p-adic interpolation properties of ζ(h, L , s). For this we use the following principle:
For any subring A ⊂ C consider the natural inclusion RA ⊂ RC. Then we have a
commutative diagram

Hn−1(�, RA ⊗ λ)
ev−−−−→ (RA)�

⏐⏐�
⏐⏐�

Hn−1(�, RC ⊗ λ)
ev−−−−→ (RC)�

(5.9)

and any class coming from Hn−1(�, RA ⊗ λ) has to have coefficients in A under the
evaluation map.

We express the next results in a more classical language. Let f and b be an integral
ideals. Then the partial zeta function of the ray class of b modulo f is defined to be

ζ(b, f, s) =
∑

g

Ng−s

where the sum is taken over all integral ideals in the ray class modulo f defined by b.
These g are all of the form g = bμ, with μ ∈ (1 + fb−1)+ = (1 + L)+, where we
write L = fb−1, so that

ζ(b, f, s) := N b−sζ(1, fb−1, s). (5.10)

It follows directly from the definition that for f′ ⊂ f

∑

b′ mod f′,b′≡b mod f

ζ(b′, f′, s) =
⎛

⎝
∏

p|f, p�f′

1

1− Np−s

⎞

⎠ ζ(b, f, s). (5.11)

Corollary 5.7 (Klingen–Siegel) Let h ∈ F ⊗ R/L be a non-zero torsion point, then
for k ≥ 0 one has ζ(h, L ,−k) ∈ Q. In particular,

ζ(b, f,−k) ∈ Q

for all k ≥ 0, if f �= OF and for all k ≥ 1 if f = OF .

Proof Recall from Theorem 4.7 that the class from Definition 3.41

Eis(h) = contr(h∗ pol) ∈ Hn−1(�, RQ ⊗ λ)

is represented by contr(h∗(�G + η) =) = contr(�(h∗G )). By definition of mult in
(3.21) we have �(h∗G ) = mult(h∗G ), so that Eis(h) is represented by h∗G (recall
that contr ◦mult = id). It follows from Theorem 5.6 and the above principle that

exp∗k(ev(Eis(h)) = (−1)n−1ζ(h, L ,−k)z[k]1 · · · z[k]n
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has coefficients in Q. If f �= OF then 1 is a non-zero f-torsion point and the result
follows immediately from (5.10). If f = OF choose any prime ideal f′ = p and then
the result follows from (5.11). ��

With our methods we immediately obtain the following integrality result.

Corollary 5.8 (Deligne–Ribet, Cassou-Nougès [5,6]) Let c be an integral ideal
coprime to fb−1. Then for k ≥ 0 one has

N cζ(1, fb−1,−k)− ζ(1, c−1f−1b,−k) ∈ Z

[
1

N c

]
.

In particular, for f �= OF and k ≥ 0 one has

(N c)1+kζ(b, f,−k)− ζ(bc, f,−k) ∈ N bkZ

[
1

N c

]
.

If f = OF the same result holds for k ≥ 1.

Proof Let L := fb−1 and choose f ∈ f totally positive coprime to cb. Then

ζ

(
1

f
, f −1L , s

)
= N f sζ(1, L , s)

which implies N f kζ( 1
f , f −1L ,−k) = ζ(1, L ,−k). Write L ′ := f −1L and consider

the isogeny [c] : L ′ → L ′c−1 of degree N c. Let A := Z[ 1
N c ], so that ker[c] ⊂ T (A).

Then the function α[c] ∈ A[ker[c]]0 defined in (3.20) gives an element

f Eisα[c]

(
1

f

)
∈ Hn−1

(
�, R

Z

[
1
N c

] ⊗ λ

)
.

From Corollary 3.44 and from Remark 3.36 we get that

N f kEiskα[c]

(
1

f

)
= N f k

(
(N c)Eisk

(
1

f

)
− Eis′k

(
[c]
(
1

f

)))

has coefficients in Z[ 1
N c ]. From the proof of Corollary 5.7 we deduce that

ev
(
N f kEiskα[c](1)

)

= (−1)n−1N f k
(

(N c)ζ

(
1

f
, L ′,−k

)
− ζ

(
1

f
, L ′c−1,−k

))
z[k]1 · · · z[k]n

so that

N cζ(1, fb−1,−k)− ζ(1, c−1f−1b,−k) ∈ Z

[
1

N c

]
.
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Multiplying by the integer N(bc)k gives the result as stated for f �= OF . The case
f = OF follows again from (5.11). ��

Finally, we deduce the p-adic interpolation of the zeta values. This result is due to
Deligne–Ribet [6] and, with different methods, to Barsky [1], Cassou-Noguès [5].

Fix a prime number p, an integral ideal c prime to p and let A = Zp. Recall
from Proposition 3.12 that RZp is isomorphic to the Iwasawa algebra Meas(LZp , Zp).
Consider the polynomial function wk : LZp → Zp defined by the element wk ∈
Symk L∗

Zp
, which maps a1�1+ · · · + an�n to (a1 · · · an)k . Let � ⊂ O×

F be a subgroup
of finite index. Then the moment map

momk : (RZp )� → (TSymk LZp )�
∼= Zpz

[k]
1 · · · z[k]n (5.12)

maps μ 	→ μ(wk)z[k]1 · · · z[k]n . One has a commutative diagram

(RZ[1/c])�
momk−−−−→ (TSymk LZ[1/c])�⏐⏐�

⏐⏐�

(RZp )�
momk−−−−→ (TSymk LZp )�

and the image of Eisα[c] under the upper horizontal map were computed in Corol-
lary 5.8. We keep the lattice L = fb−1 and consider the function α[c] for the isogeny
[c] : L → Lc−1 as defined in Definition 3.42.

Corollary 5.9 (p-adic interpolation, Deligne-Ribet, Cassou-Noguès, Barsky [1,5,6])
Let p be a prime number and f be divisible by all primes above p and � := O+,×

1 be
the stabilizer of 1 in the totally positive units. Then the element

ev(Eisα[c](1)) ∈ (RZp )�

is ameasurewhose value onwk is (−1)n−1((N c)ζ(1, fb−1,−k)−ζ(1, fb−1c−1,−k)).
Proof This is immediate from the above remarks and Corollary 5.8. ��

5.4 Eisenstein distributions and measures

In this section we let A = Zp so that we can identify R = Zp[[LZp ]] (see Proposi-
tion 3.12). Denote by T (p) := T (Zp) the subgroup of T tors of elements of order prime
to p. For any Zp-module M we consider the Zp-module

M[[�\LZp ]] := Meas(�\LZp , M) := lim←−
r

M[�\(L/pr L)]

of M-valued distributions on �\LZp . Here we have set M[�\(L/pr L)] := M ⊗Zp

Zp[�\(L/pr L)]. Note that these are measures in the ordinary sense, if M is a finitely
generated Zp-module, otherwise these are just distributions.
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Proposition 5.10 For every function g ∈ (Zp[T (p)
�{0}]0)� there is an Hn−1(�, R⊗

λ)-valued distribution

μ
g
L ,Eis ∈ Meas(�\LZp , H

n−1(�, R ⊗ λ))

on �\LZp .

Proof We are going to construct elements μ
g
r,L ,Eis ∈ M[�\(L/pr L)] in a compatible

way. The distribution μ
g
r,L ,Eis assigns to a �-invariant function f on L/pr L an ele-

ment in Hn−1(�, R ⊗ λ). This we define as follows. The isogeny [pr ] : Tpr L → TL
associated to the inclusion pr L ⊂ L yields an isomorphism [pr ] : T (p)

pr L
∼= T (p)

L ,

which allows to consider the function g ∈ (Zp[T (p)
L � {0}]0)� as an element

gr ∈ (Zp[T (p)
pr L � {0}]0)� . Then Definition 3.38 gives an element

Eis( f ⊗ gr ) ∈ Hn−1(�,L ogpr L |L/pr L ⊗λpr L),

where we view L/pr L ⊂ Tpr L as the kernel of the isogeny [pr ]. The trace map
associated to [pr ] induces

Tr[pr ] : Hn−1(�,L ogpr L |L/pr L ⊗λpr L) → Hn−1(�,L ogL |{0} ⊗λL)

= Hn−1(�, R ⊗ λ)

and we define

μ
g
r,L ,Eis( f ) := Tr[pr ](Eis( f ⊗ gr )).

As gr = [pr ]∗(g) it follows from Corollary 3.48 that the μ
g
r,L ,Eis( f ) indeed define a

distribution on �\LZp . ��
Proposition 5.11 Recall that R = Zp[[LZp ]]. There is a canonical homomorphism

Hn−1(�, Zp[[LZp ]] ⊗ λ) → Meas(�\LZp , H
n−1(�, Zp ⊗ λ)).

Proof The pairing between distributions and functions on L/pr L is a map

Zp[L/pr L] × Zp[L/pr L] → Zp

so that the cup-product defines a pairing

H0(�, Zp[L/pr L])⊗Zp Hn−1(�, Zp[L/pr L] ⊗ λ) → Hn−1(�, Zp ⊗ λ)

and hence a homomorphism

Hn−1(�, Zp[L/pr L] ⊗ λ) → Hn−1(�, Zp ⊗ λ)⊗Zp Zp[�\(L/pr L)].
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Composing this homomorphism with the projection

Hn−1(�, Zp[[LZp ]] ⊗ λ) → Hn−1(�, Zp[L/pr L] ⊗ λ)

and passing to the projective limit give the desired homomorphism. ��
Using this proposition the Eisenstein distribution gives rise to an element in

Meas(LZp/�,Meas(�\LZp , H
n−1(�, Zp ⊗ λ)))

∼= Meas(�\LZp × �\LZp , H
n−1(�, Zp ⊗ λ)) (5.13)

where the isomorphism comes from the Fubini theorem about integration on a product
space. Note that in the case where � ⊂ Aut(L) is an arithmetic subgroup, the Zp-
module Hn−1(�, Zp ⊗ λ) is finitely generated, so that the Eisenstein distribution
becomes a measure on �\LZp × �\LZp .

The next theorem shows that the Eisenstein distribution does not give anything
essentially new.

Theorem 5.12 For any g ∈ (Zp[T (p)
� {0}]0)� the Eisenstein measure

μ
g
L ,Eis ∈ Meas(�\LZp × �\LZp , H

n−1(�, Zp ⊗ λ))

is supported on the diagonal �\LZp

�−→ �\LZp × �\LZp .

Proof The proof is formal and one has just to unravel the definition of μ
g
L ,Eis. It

certainly suffices to show this for μ
g
r,L ,Eis, i.e., to work with Lr := L/pr L and

Ar := Z/prZ. Let L ′ := pr L and t ∈ L . Then t defines a pr -torsion point on T ′
because this group is just Lr . We assume in this proof that � acts trivially on Lr

otherwise one has to replace t by some linear combination of pr -torsion sections. We
consider the Eisenstein measure

μ
g
r,L ,Eis : Ar [Lr ]� → Hn−1(�, Ar [Lr ] ⊗ λ)

as a map from the �-invariant functions on Lr to Hn−1(�, Ar [Lr ] ⊗ λ). By its con-
struction μ

g
r,L ,Eis evaluated at δt ∈ Ar [Lr ] is given by Tr[pr ](Eis(δt ⊗ [pr ]∗(g))),

where [pr ] is the isogeny [pr ] : L ′ → L . We have

Eis(δt ⊗ [pr ]∗(g)) ∈ Hn−1(�, t∗L og′ ⊗ λ′).

We claim that t∗L og′ ∼= Meas(t + L ′
Zp

, Ar ). This follows because L og′ ∼=
π!Ar [L ′] ⊗Ar R

′ by the construction ofL og′ and because t∗π!Ar [L ′] = Ar [t + L ′],
where we denote by Ar [t+L ′] the free Ar -module on t+L ′. Taking the tensor product
with R completes this Zp[L ′]-module and gives the desired isomorphism.
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The isogeny [pr ] induces a map [pr ]L og : t∗L og′ → 0∗L og which identifies
with

[pr ]∗ : Meas(t + L ′
Zp

, Ar ) → Meas(LZp , Ar ).

If we compose this with Meas(LZp , Ar ) → Meas(Lr , Ar ) = Ar [Lr ] we see that the
image of Meas(t + L ′

Zp
, Ar ) in Ar [Lr ] is given by Arδt . In particular, if we consider

the pairing

Ar [Lr ]� ⊗ Hn−1(�, Ar [Lr ] ⊗ λ) → Hn−1(�, Ar ⊗ λ)

we see that δs ⊗ μ
g
r,L ,Eis(δt ) 	→ 0 for s �= t . If we rewrite the Eisenstein measure as

μ
g
r,L ,Eis : Ar [Lr ]� × Ar [Lr ]� → Hn−1(�, Ar ⊗ λ)

this just means that μ
g
r,L ,Eis(δt ⊗ δs) = 0 for t �= s, i.e., that μ

g
r,L ,Eis is supported on

the diagonal. ��
Corollary 5.13 The measure μ

g
L ,Eis ∈ Meas(�\LZp , H

n−1(�, A[[LZp ]] ⊗ λ)) is
completely determined by its image

μ
g
L ,Eis ∈ Meas(�\LZp , H

n−1(�, A ⊗ λ))

under the augmentation map A[[LZp ]] → A. It is also completely determined by its
value on the constant function 1 on LZp/�:

μ
g
L ,Eis(1) ∈ Hn−1(�, A[[LZp ]] ⊗ λ).

Proof This is just a reformulation of the theorem. ��
In the case of totally real fields, this has the following consequence.

Corollary 5.14 Let F be a totally real field with ring of integersOF and � := O+,×
1

be the stabilizer of 1 in the totally positive units. Let f, b be integral ideals with f
divisible by all primes above p and L = fb−1. Then the measure

ev(Eisα[c](1)) ∈ (RZp )�

from Corollary 5.9 coincides with the measure μ
α[c]
L ,Eis.

5.5 Relation with Eisenstein cohomology on Hilbert modular varieties

The Eisenstein cohomology classes constructed in this paper are very special. Even
for GL2 it is not clear how to get all Eisenstein cohomology classes starting from the
polylogarithm. We point out that this amounts to a purely topological construction
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of the Eisenstein cohomology considered by Harder, which is transcendental. It is
therefore surprising that in the case of Hilbert modular varieties Graf [7] succeeded
to get all of Harder’s Eisenstein cohomology classes starting from the topological
polylogarithm.

In this section we explain (a slight variant of) the construction of Graf with the
purpose of proving some integrality and p-adic interpolation properties of the Eisen-
stein cohomology classes. For more details and the actual comparison with Harder’s
Eisenstein cohomology we refer to the thesis of Graf [7]. We remark that Harder’s
applications to special values of L-functions are in the case of GL2 over fields which
are not totally real. This means that applications to special values of L-functions in
the case treated here, if any, still have to be found.

We mention that meanwhile the construction of Graf has been generalized to the
motivic setting by the second author of this article (forthcoming).

Let again F/Q be a totally real field of degree n with ring of integersOF . We define
for any fractional ideal a of F the group

GL+2 (OF , a) :=
{(

a b
c d

)
∈ GL2(F) | a, d ∈ OF , b ∈ a, c ∈ a−1, ad − bc ∈ O+,×

F

}
.

We identify the centre of GL+2 (OF , a) with O×
F and we let PGL2(OF , a) be the

quotient. The group GL+2 (OF , a) acts on (F ⊗ R)2 ∼= F ⊗ C from the right and
stabilizes the lattice

L := OF · 1+ a · √−1 ⊂ F ⊗ C.

We consider the torus T := F ⊗ C/L of real dimension 2n and an integer N > 1
which is invertible in A. We let

D := T [N ]\{0} ⊂ T (5.14)

be the N -torsion subgroup without the 0-section and denote by � ⊂ GL+2 (OF , a)
the stabilizer of D. Let � := � ∩ O×

F be the intersection of � with the centre.
Then � ⊂ GL+2 (OF , a) and � ⊂ O×

F are subgroups of finite index and we define
�′ := �/� ⊂ PGL2(OF , a), so that we have an exact sequence

0 → � → � → �′ → 0.

Remark 5.15 To have a geometric perspective on this, we define GL+2 (F ⊗ R) :=
{(ω1, ω2) ∈ (F⊗C)2 |  (ω2

ω1
) > 0}. Then ( a b

c d

) ∈ � acts on (ω1, ω2) ∈ GL+2 (F⊗R)

by right multiplication (ω1, ω2)
(
a b
c d

)
and λ ∈ (F ⊗ C)× acts by left multiplication

λ(ω1, ω2) = (λω1, λω2). The map (ω1, ω2) 	→ τ := ω2
ω1

identifies the quotient

(F ⊗ C)×\GL+2 (F ⊗ R) with the upper half plane F ⊗ H := {τ ∈ F ⊗ C |
 τ totally positive}. Note that the map GL+2 (F ⊗ R) → F ⊗ H is compatible with
the homomorphism � → �′.
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The Eisenstein class of Definition 3.33 provides us for any ring A in which N is
invertible with a map

Eis : (A[D]0)� → H2n−1(�, R ⊗ λ). (5.15)

We explain how to get cohomology classes in other degrees starting from this class.
Consider the Hochschild–Serre spectral sequence

H2n−1−p(�′, H p(�, R ⊗ λ)) ⇒ H2n−1(�, R ⊗ λ).

As � has cohomological dimension n − 1 we have an edge morphism

H2n−1(�, R ⊗ λ) → Hn(�′, Hn−1(�, R ⊗ λ)). (5.16)

If we compose this with the cap-product with Hn−1(�, Z) we get a map

Eis : (A[D]0)� ⊗ Hn−1(�, Z) → Hn(�′, (R ⊗ λ)�).

In order to get also the Eisenstein classes in other cohomological degrees consider

O+,×
N := {u ∈ O+,×

F | u ≡ 1 mod N } and the determinant map �
det−→ O+,×

N . For the
rest of the section we use the following notation:


· := 
· Hom(O+,×
N , Z) = H ·(O+,×

N , Z). (5.17)

Then the map det gives rise to a ring homomorphism

det∗ : 
· → H ·(�, Z)

so that H ·(�, Z) becomes a 
·-module. Therefore (5.15) yields the map

Eis : (A[D]0)� ⊗
p → H2n−1+p(�, R ⊗ λ).

A further composition with the edge morphism and the cap-product with Hn−1(�, Z)

gives:

Definition 5.16 For each 0 ≤ p ≤ n − 1 we define the Eisenstein cohomology
operator in degree n + p to be the map

Eis : A[D]0 ⊗
p ⊗ Hn−1(�, Z) → Hn+p(�′, (R ⊗ λ)�).

Composing with exp∗k gives

Eisk : A[D]0 ⊗
p ⊗ Hn−1(�, Z) → Hn+p(�′, (TSymk L A)� ⊗ λ).

Remark 5.17 For A a Q-algebra, one can show that (TSymk L A)� = 0 if k is not a
multiple of n and non-trivial otherwise.
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Choose generators for 
p and Hn−1(�, Z) ∼= 
n−1�, then we get directly from
the construction the following integrality result for the Eisenstein cohomology:

Proposition 5.18 Let α ∈ Z[ 1N ][D]0 then with the above generators

Eiskα ∈ Hn+p
(

�′,
(
TSymk L

Z

[
1
N

]
)

�

⊗ λ

)
.

Keeping the generators andputting A = Zp weget also a p-adic interpolation result.
Recall Proposition 3.12 that for A = Zp one has an isomorphism A[[LZp ]] ∼= R.

Proposition 5.19 With the above notations, for each α ∈ Zp[D]0 the class

Eisα ∈ Hn+p(�′, (A[[LZp ]])� ⊗ λ)

has the interpolation property that

momk(Eisα) = Eiskα ∈ Hn+p(�′, (TSymk LZp )� ⊗ λ). (5.18)

Proof This is clear from the construction. ��
Remark 5.20 The consequences for special values of L-functions and p-adic L-
functions still have to be explored. We remark that in [9] the constant terms of the
Eisenstein classes of the polylogarithm was computed in terms of L-functions for
totally real fields. This should generalize to the Eisenstein classes constructed by
Graf.

Proposition 5.21 (Graf [7]) If A is a Q-algebra then the product map

⊕

p

H2n−1−p(�′, R� ⊗ λ)⊗
p → H2n−1(�, R ⊗ λ)

is an isomorphism.

Proof One has 
· ⊗Q ∼= H ·(�, Q). As in Remark 5.5 the projection p� : R → R�

then gives rise to isomorphisms

H p(�, R ⊗ λ) ∼= H p(�, R� ⊗ λ) ∼= R� ⊗ λ⊗
p

and the result follows from the Hochschild–Serre spectral sequence.

Remark 5.22 In his thesis Graf decomposes the topological polylogarithm according
to the isomorphism in the above proposition and shows that the resulting cohomology
classes give all the Eisenstein cohomology constructed byHarder. For this he explicitly
computes these Eisenstein classes.
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